新闻中心
空军将大规模应用飞机预测性维护技术

据airforcemag网站2020年5月26日刊文,美国空军刚刚成立的快速维护办公室计划在2020年将使用预测性维护技术的飞机数量增加两倍。

美国空军于2019年启动了增强型基于状态的维护(CBM+)项目,通过传感器和算法收集数据,以确定哪些武器系统部件需要在失效前更换,目标是采取积极主动的维护策略,而不是坐等零部件损坏。美国空军希望节省维护资金,同时保持飞机和飞行员的安全。

截止2020年5月14日,快速维护办公室对B-1、KC-135、C-5、C-130和F-15等飞机进行了预测性维护,并希望到9月底将维护范围扩大至B-52、C-17、AC-130J、MC-130J、CV-22、HH-60、RC-135、MQ-9、F-16、RQ-4、A-10等各种空中平台和“民兵III”洲际弹道导弹。美国空军还与C3人工智能公司合作,为E-3飞机提供预测性维护,将计划外的维护工作量减少了近30%。到目前为止,快速维护办公室已经节省或避免了6800万美元的维护费用。

美国空军发言人达里尔·梅耶表示,到2022财年结束时,除了那些即将退役的平台,所有空军平台都应该采取某种形式的预测性维护。快速维护办公室计划在未来五年里,每年新增10到20种平台的预测性维护,每个平台启动预测性维护大约需要300万美元,而维持这些工作需要150万美元。

此外,美国空军还为地面保障设备和机库制热/冷却系统提供了数据驱动的维护模型,探索如何在飞机以外的领域应用预测性维护技术。

美国空军表示,很多人认为预测性维护的难点在分析,但早期阶段并不是这样,获取有用的数据(既有基于传感器的数据,也有基于记录的数据)也是一项挑战,对供应和维修体系也是一项挑战。美国空军对分析技术的需求确实会随着时间的推移而增加,但这不是预测性维护的限制。

不过,最初的几个试点项目表明,人类的洞察力对理解这些数据至关重要。梅耶表示,数据需要与项目专家的分析结果相平衡,还要从企业层面考虑预测性维护体系。比如,看起来像是很适合进行预测性维护的零部件,最终往往不能只对其进行维修。有时,当一个预测性维护计划启动时,供应链无法满足新零部件的需求。因为在零部件失效前将其移除,会导致零部件需求激增(如果现有的库存周期很长),而且还需要特定的维修程序来进行大修,而不是仅仅修复快要损坏的零部件(毕竟它们还没有坏)。

美国空军表示,人工智能技术、机器学习技术、大数据技术是缩减和重新利用劳动力的关键,但也不意味着CBM+的结果就是维护人员减少。梅耶补充说,从概念上讲,预测性维护确实会减少计划外的维护工作,美国空军希望这能够带来积极的价值。然而,目前还不清楚预测性维护是否能够减少劳动力需求,而只能够确定计划外的维护工作会转变成计划内的维护工作,只能转移而不一定减少劳动力需求。

欢迎咨询或预约演示   联系我们
联系我们
021-50869151
marketing@tarran.com.cn
上海|南京|武汉
版权所有 @ 2020 上海塔兰行智能科技有限公司 Shanghai Tarran Smart Science&Technology Co.,Ltd
沪公网安备 31011002002229号
免费特黄特黄的欧美大片,日本成熟老妇乱,中文字幕色婷婷在线视频,日本免费啪视频在线看视频 网站地图